On the Relation between Block Diagonal Matrices and Compressive Toeplitz Matrices
نویسندگان
چکیده
In a typical communications problem, Toeplitz matrices Φ arise when modeling the task of determining an unknown impulse response a from a given probe signal φ. When a is sparse, then whenever Φ formed from the probe signal φ satisfy the Restricted Isometry Property (RIP), a can be robustly recovered from its measurements via l1-minimization. In this paper, we derived the RIP for compressive Toeplitz matrices whose number of rows of the matrices J is much smaller than the number of columns N . We show that J should scale like J ∼ S log(N), where S is the sparsity of the impulse response. While this is marginally worse than the state-of-the-art scaling currently achieved in the literature, the novelty of this work comes from making the relation between the Toeplitz matrix of interest to a block diagonal matrix. The proof of the RIP then follows from using recent results on the concentration of measure inequalities of block diagonal matrices, together with a standard covering-and-counting argument.
منابع مشابه
Concentration of Measure for Block Diagonal Matrices with Applications to Compressive Sensing
Theoretical analysis of randomized, compressive operators often depends on a concentration of measure inequality for the operator in question. Typically, such inequalities quantify the likelihood that a random matrix will preserve the norm of a signal after multiplication. When this likelihood is very high for any signal, the random matrices have a variety of known uses in dimensionality reduct...
متن کاملON THE FUNCTION OF BLOCK ANTI DIAGONAL MATRICES AND ITS APPLICATION
The matrix functions appear in several applications in engineering and sciences. The computation of these functions almost involved complicated theory. Thus, improving the concept theoretically seems unavoidable to obtain some new relations and algorithms for evaluating these functions. The aim of this paper is proposing some new reciprocal for the function of block anti diagonal matrices. More...
متن کاملBlock Diagonal and Schur Complement Preconditioners for Block-Toeplitz Systems with Small Size Blocks
Abstract. In this paper we consider the solution of Hermitian positive definite block-Toeplitz systems with small size blocks. We propose and study block diagonal and Schur complement preconditioners for such block-Toeplitz matrices. We show that for some block-Toeplitz matrices, the spectra of the preconditioned matrices are uniformly bounded except for a fixed number of outliers and this fixe...
متن کاملLU -factorization of Block Toeplitz Matrices
We give a review of the theory of factorization of block Toeplitz matrices of the type T = (Ti−j)i,j∈Zd , where Ti−j are complex k × k matrices, in the form T = LDU, with L and L−1 lower block triangular, U and U−1 upper block triangular Toeplitz matrices, and D a diagonal matrix function. In particular, it is discussed how decay properties of Ti a ect decay properties of L, L−1, U , and U−1. W...
متن کاملThe Restricted Isometry Property for Random Block Diagonal Matrices
In Compressive Sensing, the Restricted Isometry Property (RIP) ensures that robust recovery of sparsevectors is possible from noisy, undersampled measurements via computationally tractable algorithms. Itis by now well-known that Gaussian (or, more generally, sub-Gaussian) random matrices satisfy the RIPunder certain conditions on the number of measurements. Their use can be limi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011